A Rank Two Algorithm for Unconstrained Minimization

By Ronald Bass

Abstract

A stable second-order unconstrained minimization algorithm with quadratic termination is given. The algorithm does not require any one-dimensional minimizations. Computational results presented indicate that the performance of this algorithm compares favorably with other well-known unconstrained minimization algorithms.

Introduction. Algorithms for unconstrained minimization have enjoyed a great deal of attention in recent years. The fundamental philosophy behind most of these algorithms is the exploitation of the locally quadratic nature of a well-behaved function at an unconstrained local minimum. The Davidon-Fletcher-Powell method [1] was highly successful in this regard and guarantees finite convergence when the function is quadratic, monotone decrease of function value when it is not. However, a potentially time consuming one-dimensional minimization is required in each iteration. Recently developed rank one [2] and rank two [3] methods eliminate the need for this minimization. The rank one method, however, sacrifices finite convergence for stability, and the rank two method eliminates the one-dimensional minimization by trading finite convergence for monotone convergence. The amount of computation in each iteration is reduced, but the number of iterations required may be increased.

In this paper, we present a rank two method which has the combined virtues of finite convergence for quadratic functions and stability for any function, and does not require a one-dimensional search at each iteration. This combination of desirable properties is achieved by making full use of the flexibility of a rank two algorithm.

The algorithm given here is cyclic, i.e., it repeats itself every N iterations (when minimizing a function of N variables) unlike the Davidon-Fletcher-Powell algorithm, which is the same in every iteration. Kelley and Myers [8] presented a cyclic method which is a special case of the algorithm given here.

Statement of the Problem. We are interested in minimizing a scalar function $f(x), x$ an N-vector. Let x^{*} be the value of x that minimizes f. Assume that f is locally quadratic about x^{*}, i.e., for x near x^{*},

$$
\begin{equation*}
f(x)=\frac{1}{2} x^{\prime} G x+b^{\prime} x+e, \tag{1}
\end{equation*}
$$

where G is a positive definite symmetric matrix (p.d.s.m.). A necessary and sufficient condition that x^{*} minimize this quadratic is that

[^0]Copyright © 1972, American Mathematical Society

$$
g\left(x^{*}\right) \triangleq \operatorname{grad} f\left(x^{*}\right)=0=G x^{*}+b
$$

or
(2)

$$
x^{*}=-G^{-1} b
$$

Given any x,

$$
\begin{equation*}
x^{*}-x=-G^{-1} b-x=-G^{-1}(b+G x)=-G^{-1} g(x) \tag{3}
\end{equation*}
$$

Thus, if f is locally quadratic about x^{*} and x is near x^{*},

$$
s=-G^{-1} g(x), \quad x^{*}=x+s
$$

i.e., s is a good direction in which to search for a minimum of f. Further, if x is far from x^{*}, and G is the matrix of second derivatives of f at x, s is the best direction, based on a local quadratic approximation, in which to search for a decrease in f.

It is therefore desirable to have an efficient method for obtaining a good estimate H of the inverse second derivative matrix G^{-1} at x.
N-Term Rank One Decompositions of p.d.s.m. Let A be an $N \times N$ p.d.s.m. Let d_{1}, \cdots, d_{N} be A-orthogonal, i.e.,

$$
\begin{align*}
d_{i}^{\prime} A d_{i} & =0 \quad \text { if } i \neq j \tag{4}\\
& =r_{i} \quad \text { if } i=j, r_{i}>0
\end{align*}
$$

then it is readily verified that

$$
\begin{equation*}
A^{-1}=\sum_{i=1}^{N} \frac{d_{i} d_{i}^{\prime}}{d_{i}^{\prime} A d_{i}} \tag{5a}
\end{equation*}
$$

Conversely, if for some (linearly independent) set of vectors, d_{1}, \cdots, d_{N}.

$$
\begin{equation*}
A^{-1}=\sum_{i=1}^{N} \frac{1}{r_{i}} d_{i} d_{i}^{\prime} \tag{5b}
\end{equation*}
$$

then, those vectors are A-orthogonal and satisfy Eq. (4). Thus, all N-term symmetric rank one decompositions of a p.d.s.m. A^{-1} are exactly those decompositions given by all sets of A^{-1}-orthogonal vectors.

Constructing a Set of G-Orthogonal Vectors From a Set of Linearly Independent Vectors. In the following two lemmas, algorithms are given for constructing A^{-1} orthogonal and A-orthogonal vectors for p.d.s.m. A from a set of linearly independent vectors.

Lemma 1. Let A be an $N \times N$ p.d.s.m. Let d_{1}, \cdots, d_{N} be a set of nonzero vectors. Let $A_{0}=0$, and, for $k=1, \cdots$, N, let

$$
\begin{array}{rlrl}
c_{k} & =d_{k}-A_{k-1} A d_{k}, \\
A_{k} & =A_{k-1}+c_{k} c_{k}^{\prime} / c_{k}^{\prime} A c_{k} & \text { if } c_{k}^{\prime} A c_{k} \neq 0, \\
& =A_{k-1} & \text { if } c_{k}^{\prime} A c_{k}=0 .
\end{array}
$$

Then:
(1) There exist $\left\{a_{i j}\right\},\left\{b_{i j}\right\}$ such that
(a)

$$
\begin{aligned}
& c_{i}=d_{i}+\sum_{i=1}^{i-1} a_{i i} d_{i} \\
& d_{i}=\sum_{i=1}^{i} b_{i i} c_{i}
\end{aligned}
$$

(b)
(2) If and only if $d_{1}, \cdots, d_{n}, n \leqq N$, are linearly independent, then c_{1}, \cdots, c_{n} are A-orthogonal, and therefore if d_{1}, \cdots, d_{N} are linearly independent, $A_{N}=A^{-1}$.
(3) If d_{1}, \cdots, d_{i-1} are linearly independent and d_{i} is linearly dependent on d_{1}, \cdots, d_{i-1}, then $c_{i}=0$.
(4) $A_{k} A A_{k}=A_{k}$.

Proof. (1a) We have, by definition, $c_{1}=d_{1}$. Assume

$$
c_{i}=\sum_{i=1}^{i} a_{i j} d_{i}, \quad j=1, \cdots, k-1, a_{i j}=1
$$

where some of the c_{i} may be zero.
Then, by definition of c_{k} and A_{k},

$$
\begin{aligned}
c_{k} & =d_{k}-A_{k-1} A d_{k}=d_{k}-\sum_{i=1: c_{i}, 0}^{k-1} c_{i} \frac{c_{j}^{\prime} A d_{k}}{c_{j}^{\prime} A c_{i}} \\
& =d_{k}-\sum_{i=1 ; c_{i} \neq 0}^{k-1} \sum_{i=1}^{i} a_{i j} d_{i} \frac{c_{i}^{\prime} A d_{k}}{c_{i}^{\prime} A c_{i}}
\end{aligned}
$$

(b) follows immediately from (a).
(2) Assume d_{1}, \cdots, d_{n} are linearly independent. We will show that c_{1}, \cdots, c_{n} are A-orthogonal. From (1a) of Lemma 1, c_{1}, \cdots, c_{n} are nonzero, and

$$
c_{1}^{\prime} A c_{2}=d_{1}^{\prime} A I-\frac{d_{1} d_{1}^{\prime} A}{d_{1}^{\prime} A d_{1}} d_{2}=0
$$

Let the inductive hypothesis be that $c_{i}, i \leqq k<n$ are A-orthogonal. Then, for $i \leqq k$,

$$
\begin{aligned}
c_{i}^{\prime} A c_{k+1} & =c_{i}^{\prime} A\left(I-A_{k} A\right) d_{k+1} \\
& =\left(c_{i}^{\prime} A-c_{i}^{\prime} A \sum_{i=1}^{k} \frac{c_{i} c_{j}^{\prime} A}{c_{i}^{\prime} A c_{i}}\right) d_{k+1}=0
\end{aligned}
$$

and c_{1}, \cdots, c_{k+1} are A-orthogonal.
Conversely, suppose d_{1}, \cdots, d_{n} are linearly dependent. We will show that c_{1}, \cdots, c_{n} are not A-orthogonal. From (1a) of Lemma $1, c_{1}, \cdots, c_{n}$ are also linearly dependent, and for some $j \leqq n$,

$$
c_{i}=\sum_{k \neq i} a_{k} c_{k}, \quad a_{l} \neq 0 \text { for some } l \neq j
$$

Then, if c_{1}, \cdots, c_{n} are A-orthogonal,

$$
0=c_{i}^{\prime} A c_{l}=a_{l} c_{l}^{\prime} A c_{l} \neq 0, \quad \text { a contradiction }
$$

(3) Let $d_{i}=\sum_{i=1}^{i-1} e_{i} d_{i}$.

From (1a) of Lemma 1, we have

$$
c_{i}=d_{i}+\sum_{i=1}^{i-1} a_{i j} d_{i}=\sum_{i=1}^{i-1}\left(a_{i j}+e_{i}\right) \sum_{l=1}^{i} b_{l i} c_{l}=\sum_{i=1}^{i-1} h_{i} c_{i}
$$

and from (lb) of Lemma 1,

$$
d_{i}=\sum_{i=1}^{i} b_{i ;} c_{i}=b_{i j} \sum_{i=1}^{i-1} h_{i} c_{i}+\sum_{i=1}^{i-1} b_{i} c_{i}=\sum_{i=1}^{i-1} m_{i} c_{i}
$$

Then, by (2) of Lemma 1,

$$
c_{i}=d_{i}-A_{i-1} A d_{i}=\sum_{i=1}^{i-1} m_{i} c_{i}-\sum_{i=1}^{i-1} \frac{c_{i} c_{i}^{\prime}}{c_{i}^{\prime} A c_{i}} A \sum_{i=1}^{i-1} m_{i} c_{i}=0 .
$$

(4) Since, by (2) of Lemma $1, c_{1}, \cdots, c_{k}$ are A-orthogonal or zero,

$$
A_{k} A A_{k}=\sum_{i=1 ; c i \neq 0}^{k} \sum_{i=1 ; c_{i} \neq 0}^{k} \frac{c_{i} c_{i}^{\prime}}{c_{i}^{\prime} A c_{i}} A \frac{c_{i} c_{i}^{\prime}}{c_{i}^{\prime} A c_{i}}=A_{k} .
$$

Lemma 2. Let A be an $N \times N$ p.d.s.m. Let d_{1}, \cdots, d_{N} be a set of nonzero vectors. Let $A_{1}=A$ and, for $k=1, \cdots, N$, let

$$
\begin{array}{rlrl}
c_{k} & =A_{k} d_{k}, & \\
A_{k+1} & =A_{k}-c_{k} c_{k}^{\prime} / c_{k}^{\prime} d_{k} & & \text { if } c_{k}^{\prime} d_{k} \neq 0 \\
& =A_{k} & & \text { if } c_{k}^{\prime} d_{k}=0
\end{array}
$$

Then:
(1) Let $z^{\prime} A d_{i}=0, i=1, \cdots, k-1$. Then $A z=A_{k} z$.
(2) A_{k} is positive semidefinite and $A_{k} d_{j}=0, j<k$.
(3) Let j be the number of linearly independent vectors in d_{1}, \cdots, d_{k-1}. Then $\operatorname{rank}\left(A_{k}\right)=N-j$.

Further, if and only if d_{1}, \cdots, d_{N} are linearly independent,
(4) $A_{N+1}=0$, i.e. $A=\sum_{i=1}^{N} c_{i} c_{i}^{\prime} / c_{i}^{\prime} d_{i}$.
(5) c_{1}, \cdots, c_{N} are A^{-1}-orthogonal.

Proof. (1) Choose $z \neq 0$ such that $z^{\prime} A d_{1}=0$. Then,

$$
A_{2} z=A z-\frac{A d_{1} d_{1}^{\prime} A z}{d_{1}^{\prime} A d_{1}}=A z
$$

Let the inductive hypothesis be that $A_{k} z=A z$ for all z such that $z^{\prime} A d_{i}=0, j=1, \cdots$, $k-1$. Then, certainly, $A_{k} z=A z$ for all z such that $z^{\prime} A d_{i}=0, j=1, \cdots, k$, and, for all such z,

$$
\begin{aligned}
A_{k+1} z & =A_{k} z-\frac{A_{k} d_{k} d_{k}^{\prime} A_{k}}{d_{k}^{\prime} A_{k} d_{k}} z=A_{k} z=A z, & & \text { if } c_{k}^{\prime} d_{k} \neq 0 \\
& =A_{k} z=A z, & & \text { if } c_{k}^{\prime} d_{k}=0
\end{aligned}
$$

(2) By definition, A_{1} is positive definite. For $d_{1} \neq 0$,

$$
A_{2} d_{1}=\left(A-\frac{A d_{1} d_{1}^{\prime} A}{d_{1}^{\prime} A d_{1}}\right) d_{1}=0
$$

Let the inductive hypothesis be that A_{k} is positive semidefinite and $A_{k} d_{i}=0, j<k$. We will show that A_{k+1} is positive semidefinite and $A_{k+1} d_{j}=0, j<k+1$.

Clearly, any x may be written

$$
x=z+\sum_{i=1}^{k} a_{i} d_{i}, \quad z^{\prime} A d_{i}=0, \quad i \leqq k
$$

Then, $z^{\prime} A=z^{\prime} A_{k}$ by (1) of Lemma 2, so that $z^{\prime} A_{k} d_{i}=0, i \leqq k$, and since by hypothesis $A_{k} d_{j}=0, j<k$, it is easily seen that

$$
x^{\prime} A_{k+1} x=z^{\prime} A_{k} z \geqq 0 .
$$

Thus, A_{k+1} is positive semidefinite. By definition, $A_{k+1} d_{j}=0, j<k$. If d_{k} is linearly dependent on d_{1}, \cdots, d_{k-1}, then $A_{k} d_{k}=0$ and $A_{k+1}=A_{k}$. Otherwise, $d_{k}^{\prime} A_{k} d_{k}>0$, since A_{k} is positive semidefinite and, by definition, $\operatorname{rank}\left(A_{k}\right)$ is at least $N-(k-1)$. Then,

$$
A_{k+1} d_{k}=A_{k} d_{k}-A_{k} d_{k} \frac{d_{k}^{\prime} A_{k} d_{k}}{d_{k}^{\prime} A_{k} d_{k}}=0
$$

This completes the induction.
(3) By definition, $\operatorname{rank}\left(A_{k}\right) \geqq N-j$, and by (2) of Lemma $2, \operatorname{rank}\left(A_{k}\right) \leqq N-j$.
(4) By (3) of Lemma 2, rank $A_{N+1}=0$ if and only if d_{1}, \cdots, d_{N} are linearly independent.
(5) We need only note that $c_{k}^{\prime} d_{k}=d_{k}^{\prime} A_{k} d_{k}>0$; then, by (4) of Lemma 2 and Eq. (5b), $c_{k}^{\prime} d_{k}=c_{k}^{\prime} A^{-1} c_{k}$ and c_{1}, \cdots, c_{N} are A^{-1}-orthogonal.

Let f be given by Eq. (1). Now, suppose we have an algorithm for minimizing f such that in the k th iteration we take a step $d_{k}=x_{k+1}-x_{k}$, resulting in a gradient change $y_{k}=g_{k+1}-g_{k}$.

We show in Lemma 3 how to construct $N G$-orthogonal vectors from any N steps (such that d_{1}, \cdots, d_{N} are linearly independent) without using G or G^{-1} explicitly.

Lemma 3. Let d_{1}, \cdots, d_{N} be linearly independent. Let $H_{0}=0$. Let $H_{k}=H_{k-1}+$ $s_{k} s_{k}^{\prime} / s_{k}^{\prime} y_{k}$, where $s_{k}=d_{k}-H_{k-1} y_{k}$. Then, $H_{N}=G^{-1}$.

Proof. We will show that

$$
s_{k}^{\prime} G s_{k}=d_{k}^{\prime} y_{k}-y_{k}^{\prime} H_{k-1} y_{k}=s_{k}^{\prime} y_{k}
$$

Then, it follows from Lemma 1 and the fact that

$$
s_{k}=d_{k}-H_{k-1} y_{k}=d_{k}-H_{k-1} G d_{k}
$$

that s_{1}, \cdots, s_{N} are G-orthogonal and $G^{-1}=H_{N}$. Clearly,

$$
s_{1}=d_{1} \quad \text { and } \quad s_{1}^{\prime} y_{1}=d_{1}^{\prime} y_{1}=d_{1}^{\prime} G d_{1}=s_{1}^{\prime} G s_{1}
$$

Then, by Lemma 1, $H_{1} G H_{1}=H_{1}$. Let the inductive hypothesis be that

$$
H_{k-1} G H_{k-1}=H_{k-1}
$$

Then, since $G d_{k}=y_{k}$, we have

$$
\begin{aligned}
s_{k}^{\prime} G s_{k} & =\left(d_{k}-H_{k-1} y_{k}\right)^{\prime} G\left(d_{k}-H_{k-1} y_{k}\right) \\
& =d_{k}^{\prime} G d_{k}-y_{k}^{\prime} H_{k-1} G d_{k}-d_{k}^{\prime} G H_{k-1} y_{k}+y_{k}^{\prime} H_{k-1} G H_{k-1} y_{k} \\
& =d_{k}^{\prime} y_{k}-y_{k}^{\prime} H_{k-1} y_{k}=s_{k}^{\prime} y_{k},
\end{aligned}
$$

and, by (4) of Lemma 1 ,

$$
H_{k} G H_{k}=H_{k} .
$$

Note that the formula for updating H_{k} in Lemma 3 is the same formula used in the rank one algorithm (Eq. (6)). However, in Lemma 3, $H_{0}=0$, whereas in the rank one algorithm H_{0} is arbitrary.

It should be noted that Lemmas 1 and 2 are simply applications of the GramSchmidt orthogonalization procedure with respect to the inner product defined by A or A^{-1}. The matrices A_{k} in these lemmas are A-orthogonal and A^{-1}-orthogonal projection operators. Lemma 3 is an application of Lemma 1.

Desirable Properties for H_{k}. Suppose f is given by Eq. (1), and let $d_{k}=x_{k+1}-$ $x_{k}, y_{k}=g_{k+1}-g_{k}, G^{-1}=H$. Then,

$$
H y_{k}=G^{-1}\left(G x_{k+1}+b-G x_{k}-b\right)=d_{k}
$$

We can now give two definitions of a "good" estimate H_{k} of G^{-1}.
First, we could require that $H_{k+1}-H_{k}$ be of rank one and that

$$
H_{k+1} y_{k}=d_{k},
$$

in which case

$$
\begin{equation*}
H_{k+1}=H_{k}+\frac{\left(d_{k}-H_{k} y_{k}\right)\left(d_{k}-H_{k} y_{k}\right)^{\prime}}{\left(d_{k}-H_{k} y_{k}\right)^{\prime} y_{k}} \tag{6}
\end{equation*}
$$

is the only possible such formula for updating H_{k} [2]. Alternately, we can require that

$$
H_{k}=\sum_{i=1}^{k} \frac{c_{i} c_{i}^{\prime}}{c_{i}^{\prime} G c_{i}}+\sum_{i=k+1}^{N} z_{i} z_{i}^{\prime}
$$

where $\left(c_{1}, \cdots, c_{k}, z_{k+1}, \cdots, z_{N}\right)$ is a set of linearly independent vectors and c_{1}, \cdots, c_{k} are G-orthogonal vectors constructed from the first k steps as described in Lemma 3. This criterion motivates the algorithm given below.

We have shown that a good search direction, $-H_{k} g_{k}$, can be obtained if H_{k} is a "good" estimate of the inverse second derivative matrix of f (we will use the second definition given above, i.e., Lemma 3). Thus, H_{k} should be updated so that if f is quadratic, $H_{N}=G^{-1}$ (quadratic termination property). This property ensures rapid convergence after reaching a point x near x^{*} if f is quadratic locally about x^{*}. Further, it is desirable that H_{k} be positive definite. Then, no matter how poor an estimate is H_{k} of the inverse second derivative matrix, the "best" search direction, $-H_{k} g_{k}$, is a locally downhill direction, i.e., there is some positive t such that $f\left(x_{k}+t\left(-H_{k} g_{k}\right)\right)$ $<f\left(x_{k}\right)$ (stability property). In the algorithm given below, H_{k} has both of these properties.

Algorithm for Unconstrained Minimization. We now give an outline of an unconstrained minimization algorithm and show in detail how $\boldsymbol{H}_{\boldsymbol{k}}$ is updated. Choice of step direction and step size are discussed later.

Step (0) $\quad x_{0}=$ initial guess of x^{*},
$H_{0}=$ initial guess of inverse second derivative matrix at x_{0},
$B_{0}=H_{0}$,
$A_{0}=0$,
$g_{0}=\operatorname{grad} f\left(x_{0}\right)$,
$k=1$.
Step (1) (choose a step d_{k}),
$x_{k}=x_{k-1}+d_{k}$,
(compute $f\left(x_{k}\right), g_{k}$ and test for convergence),

$$
\begin{aligned}
& y_{k}=g_{k}-g_{k-1} \\
& s_{k}=d_{k}-A_{k-1} y_{k} \\
& a_{k}=s_{k}^{\prime} y_{k}, \\
& \text { if } a_{k} \leqq 0 \text { go to Step (3) (see discussion below). }
\end{aligned}
$$

Step (2) $A_{k}=A_{k-1}+S_{k} s_{k}^{\prime} / a_{k}$
$B_{k}=B_{k-1}-B_{k-1} s_{k} s_{k}^{\prime} B_{k-1} / s_{k}^{\prime} B_{k-1} s_{k}$,
$H_{k}=A_{k}+B_{k}$,
increase k by 1 ,
if $k \leqq N$ go to Step (1),
if $k>N$ go to Step (3).
Step (3) set $H_{0}=B_{0}=H_{k}$,
$A_{0}=0$,
$x_{0}=x_{k}$,
$k=1$,
go to Step (1).
Properties of the Algorithm. We now exhibit some important properties of the above algorithm.

Let C_{1} be the condition: d_{1}, \cdots, d_{N} are linearly independent.
Property (1) Assume that a_{1}, \cdots, a_{N} are positive. Then, s_{1}, \cdots, s_{N} are linearly independent if and only if C_{1} holds.

Proof. It is sufficient to show that s_{k} is a linear combination of d_{1}, \cdots, d_{k}, where the coefficient of d_{k} is not zero. Clearly, $s_{1}=d_{1}$. Let the inductive hypothesis be that

$$
s_{i}=\sum_{i=1}^{i} a_{i j} d_{i}, \quad j=1, \cdots, k-1
$$

Then

$$
\begin{aligned}
s_{k} & =d_{k}-A_{k-1} y_{k}=d_{k}-\sum_{i=1}^{k-1} s_{i} \frac{s_{i}^{\prime} y_{k}}{a_{i}} \\
& =d_{k}-\sum_{i=1}^{k-1} \sum_{i=1}^{i} a_{i j} d_{i} \frac{s_{i}^{\prime} y_{k}}{a_{i}}
\end{aligned}
$$

Property (2) $B_{N}=0$ if and only if C_{1} holds (by (4) of Lemma 2 and Property (1)).
Property (3) Let f be quadratic, f given by Eq. (1). Then
(a) $a_{i}>0$ if and only if C_{1} holds.

Proof. (a) If f is quadratic, then, from the proof of Lemma 3, $a_{i}=s_{i}^{\prime} G s_{i}$, and a_{i} is zero if and only if s_{i} is zero, and is positive otherwise. But by (1) and (3) of Lemma 1 and by Property (1), s_{i} is zero if and only if C_{1} does not hold. (b) $H_{N}=G^{-1}$ if and only if C_{1} holds (by Lemma 3 and Property (2)).

Property (4) Let $a_{k}>0$ for all k. Then, H_{k} is positive definite for all k if and only if C_{1} holds.

Proof. Assume C_{1} holds. Let w_{1}, \cdots, w_{k} satisfy

$$
\begin{array}{rlrl}
w_{i}=\sum_{i=1}^{k} c_{i} s_{i}, & w_{i}^{\prime} s_{i} & =1, & i=j \\
& =0, & i \neq j
\end{array}
$$

Then, any vector x can be written as $x=v+y$, where

$$
y=\sum_{i=1}^{k} b_{i} w_{i}, \quad v^{\prime} s_{i}=0, \quad i=1, \cdots, k
$$

From Lemma $2, B_{k} s_{i}=0, i=1, \cdots, k$, and B_{k} is of rank $N-k$ and is positive semidefinite. If y and v are not zero, then

$$
\begin{array}{ll}
y^{\prime} B_{k} y=0, & v^{\prime} B_{k} v>0 \\
y^{\prime} A_{k} y>0, & v^{\prime} A_{k} v=0
\end{array}
$$

For $x \neq 0, y$ and v are not both zero, and

$$
x^{\prime} H_{k} x=y^{\prime} A_{k} y+v^{\prime} B_{k} v>0 .
$$

Conversely, if C_{1} does not hold, then, by Property (1), for some k, s_{k} is a linear combination of s_{1}, \cdots, s_{k-1}, and from (2) of Lemma $2, B_{k-1} s_{k}=0$ and B_{k} is undefined.

Property (5) H_{k} satisfies the second criterion for a good estimate of the inverse second derivative matrix, since A_{k} is in fact constructed as indicated in Lemma 3. As with the other properties, this condition is contingent upon C_{1} being satisfied.

Choice of Step Direction. The natural choice of step direction, as discussed in the introduction, is

$$
d_{k} /\left\|d_{k}\right\|=-H_{k} g_{k} /\left\|H_{k} g_{k}\right\|
$$

where $\|x\|=\left(x^{\prime} x\right)^{1 / 2}$. However, it is clear from Properties (1)-(5) that if the algorithm is to be well behaved, C_{1} must be satisfied. Suppose C_{1} is violated by $-H_{k} g_{k}$. Then, a satisfactory direction is

$$
\frac{d_{k}}{\left\|d_{k}\right\|}=-\frac{H_{k} g_{k}}{\left\|H_{k} g_{k}\right\|}\left(1-\alpha_{k}^{2}\right)^{1 / 2} \pm \alpha_{k} e_{k}
$$

where e_{k} is any unit vector perpendicular to d_{1}, \cdots, d_{k-1} and α_{k} is some prespecified constant, $0<\alpha_{k}<1$ so that $d_{k} /\left\|d_{k}\right\|$ makes an angle of $\tan ^{-1}\left(1-\alpha_{k}^{2}\right)^{1 / 2} / \alpha_{k}$ with the manifold generated by d_{1}, \cdots, d_{k-1}.

The choice of sign is such that $-g_{k}^{\prime} d_{k}$ is maximized, i.e., the modified d_{k} is in the most downhill direction. In practice, an e_{k} component would be added if $-H_{k} g_{k}$ almost violated C_{1}, and we would then choose

$$
\frac{d_{k}}{\left\|d_{k}\right\|}=-\frac{H_{k} g_{k}-e_{k}^{\prime} H_{k} g_{k} e_{k}}{\left\|H_{k} g_{k}-e_{k}^{\prime} H_{k} g_{k} e_{k}\right\|}\left(1-\alpha_{k}^{2}\right)^{1 / 2} \pm \alpha_{k} e_{k}
$$

where the sign is again chosen to maximize $-g_{k}^{\prime} d_{k}$ (see Appendix I for an efficient way to compute e_{k} and check for linear independence).

The choice of $-H_{k} g_{k}$ as a search direction is predicated upon the assumption that H_{k} is in some sense a fair approximation of the inverse second derivative matrix. This assumption is not necessarily valid for the first few iterations, and a more rapid initial reduction of the cost function might be obtained by taking these steps in the $-g_{k}$ direction.

Choice of Step Size. In practical application of the Davidon-Fletcher-Powell algorithm, it is not possible to find the exact minimum along the search direction,
and any method which is used to get an accurate approximation to that minimum, such as a Fibonacci search, is very time consuming. Consequently, some method which gives an approximation to the minimum is usually used, and it is hoped that the inaccuracy will not materially upset the performance of the algorithm. In the algorithm given here, any step size which decreases f is acceptable, and will yield convergence of H_{k} to G^{-1} in N steps if f is quadratic. However, use of a cubic interpolation scheme to achieve approximately the minimum along the search direction, such as that given by Fletcher and Powell will guarantee that if $H_{k}=G^{-1}$, the minimum will be achieved on the k th step, and will also ensure that g_{k+1} is approximately perpendicular to d_{k}, which in practice is often sufficient to guarantee that C_{1} is satisfied.

A somewhat more satisfactory method is the following: take a step $d_{k}=-H_{k} g_{k}$; if $f\left(x_{k}+d_{k}\right)<f\left(x_{k}\right)$, let $x_{k+1}=x_{k}+d_{k}$; otherwise, try $x_{k+1}=x_{k}+d_{k} / h^{m}, m=$ $1,2, \cdots$, until a decrease in f is obtained, where, for example, $h=10$ may be used so that m will remain small. This procedure guarantees that if $H_{k}=G^{-1}$, the minimum will be achieved on the k th step, and keeps the number of function evaluation per iteration small by using a relatively large h. Of course, if enough function values have been computed ($m=2$), a cubic interpolation can be used rather than simply using a larger m. This combined approach seems to be quite effective in practice (see test problems).

Case when $a_{k} \leqq 0$. Let $G\left(x_{k}\right)$ denote the second derivative matrix at x_{k}. We have shown (Property (3)) that if f is quadratic, $a_{k}>0$. If $a_{k} \leqq 0$, then, either H_{k} is not a good estimate of $G^{-1}\left(x_{k}\right)$ or the step size is so large that a quadratic approximation to f with metric $G\left(x_{k}\right)$ is not a good representation of f on the set $\left\{x_{k}+\beta\left(x_{k+1}-x_{k}\right), 0 \leqq \beta \leqq 1\right\}$. In either case, the curvature information in H_{k} is no longer very accurate. Thus, it is desirable to deemphasize the information in H_{k} by treating H_{k} and x_{k} as an initial guess and starting again, rather than assuming that H_{k} is composed of G-orthogonal vectors constructed from the last k steps. Therefore, if $a_{k} \leqq 0$ (or $a_{k} \leqq \epsilon, \epsilon>0$), we go to Step (3). Then, for the k th step

$$
\begin{aligned}
& s_{k}=s_{1}=d_{k} \\
& a_{k}=a_{1}=d_{k}^{\prime} y_{k}=d_{k}^{\prime} G d_{k} \quad \text { if } f \text { is quadratic. }
\end{aligned}
$$

If a_{k} is still negative, then f is probably not well approximated by a quadratic on $\left\{x_{k}+\beta d_{k}, 0 \leqq \beta \leqq 1\right\}$; again we let $x_{k+1}=x_{k}+d_{k}$ and return to Step (3) (without updating A_{0} or B_{0}).

The effect of this procedure is to remove old information from A_{k} while retaining that information in B_{k}. The search direction, $-H_{k} g_{k}$, is affected by the old information, but s_{k} depends only on new information in A_{k}.

Test Problems. The Davidon-Fletcher-Powell algorithm is apparently the most successful unconstrained minimization algorithm to date, so the examples presented here are taken from Fletcher and Powell's paper [1] and compared with their results. The currently accepted basis for comparison of unconstrained minimization algorithms is the number of objective function evaluations required for convergence, since in most practical problems these consume the bulk of the computing time. Calculation of the gradient is counted as N function evaluations (N the number of variables), since evaluation of each of the N components of the gradient analytically
is roughly equivalent to evaluation of the objective function, and evaluation of the gradient by perturbation requires at least N function evaluations at perturbed values of the variables.

Since Fletcher and Powell's algorithm, as applied to their test problems [1], requires at least two function and gradient evaluations per iteration (one for the main algorithm and one for the cubic interpolation), we shall ascribe to their examples a minimum of $2 N+2$ function evaluations per iteration.

The calculations for the algorithm given here were carried out on a Univac 1108 computer in single-precision arithmetic (8 significant figures). In all examples, the step direction and step size schemes given above were used, with $h=10$ and $\alpha_{k}=.1$ and were found to give good results (convergence rates were not very sensitive to changes in these parameters). The first test problem is (Table 1) the parabolic valley

Table 1
Parabolic Valley

Iteration	Our Method			Fletcher and Powell	
0	24.2	Number of function evaluations	f	Minimum number of function evaluations	
3	4.18	1	24.2	1	
6	3.67	12	3.69	18	
9	3.62	21	1.605	36	
12	3.37	30	.745	54	
15	2.14	40	.196	72	
18	1.78	50	.012	90	
25	.631	60	1×10^{-8}	108	
30	.344	82			
35	.260	100			
40	.116	116			
45	.066	133			
50	.025	151			
55	.015	17^{\prime}			
58	.0012	191			
60	2.7×10^{-4}	203			
62	3.5×10^{-5}	210			
64	1.4×10^{-7}	217			
65	4.4×10^{-8}	224			
66	4.6×10^{-12}	238			

originally given by Rosenbrock [5],

$$
f\left(x_{1}, x_{2}\right)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

with starting point $(-1.2,1)$ and a zero at $(1,1)$. The second problem (Table 2) is a steep-sided helical valley,

$$
f\left(x_{1}, x_{2}, x_{3}\right)=100\left[\left(x_{3}-10 A\right)^{2}+(R-1)^{2}\right]+x_{3}^{2}
$$

where

$$
\begin{aligned}
2 \pi A & =\arctan \left(x_{2} / x_{1}\right) & & \text { if } x_{1}>0 \\
& =\arctan \left(x_{2} / x_{1}\right)+\pi & & \text { if } x_{1}<0
\end{aligned}
$$

and

$$
R=\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}
$$

The distance x_{3} along the axis of the helix is restricted so that $-2.5<x_{3}<7.5$. The starting point is $(-1,0,0)$ and the function has a zero minimum at $(1,0,0)$.

Table 2
Helical Valley

Our Method

Fletcher and Powell

	Our Method		Fletcher and Powell	
Iteration	f	Number of function evaluations	f	Minimum number of function evaluations
0	2500	1	2500	1
1	2139	4	520	8
2	13.34	8	110	16
3	6.99	13	74.1	24
4	6.84	17	24.2	32
5	. 46	21	10.9	40
6	. 14	25	9.8	48
7	. 065	29	6.3	56
8	. 049	33	6.09	64
9	. 047	37	1.89	72
10	. 047	41	1.75	80
11	. 040	46	. 76	88
12	. 0089	50	. 38	96
13	. 0063	54	. 14	104
14	. 0045	59	. 058	112
15	5.6×10^{-4}	63	. 018	120
16	1.4×10^{-4}	67	8×10^{-4}	128
17	1.1×10^{-4}	72	3×10^{-6}	136
18	5.0×10^{-6}	76	7×10^{-8}	144
19	3.6×10^{-6}	81		
20	2.5×10^{-6}	86		
21	3.7×10^{-9}	90		

Finally, we give some examples (Table 3) of solutions of functions of many variables. The function used is

$$
f(x)=\sum_{i=1}^{N} x_{i}^{2}+\left(\sum_{i=1}^{N} i^{1 / 2} x_{i}\right)^{2}+\left(\sum_{i=1}^{N} i^{1 / 2} x_{i}\right)^{4}
$$

which has a zero minimum at $x_{i}=0$. Starting values were $x_{i}=.1$.

Table 3
Function of Many Variables

	$N=10$	$N=20$			
	Number of function evaluations	Function value	Iteration	Number of function evaluations	Function value
0	1	30.6	0	1	1484
3	37	.154	3	69	39.1
6	70	.0035	6	132	1.86
9	103	.098	10	176	.47
12	125	.00019	20	386	.010
15	158	6×10^{-7}	30	596	.0017
18	192	6×10^{-8}	40	806	.0016
20	205	4×10^{-10}	50	1017	6.6×10^{-4}
			60	1227	3.8×10^{-4}
			70	1437	2.2×10^{-4}
			80	1649	1.7×10^{-4}
			90	1859	7.2×10^{-5}
			100	2069	6.2×10^{-5}
			110	2279	4.9×10^{-5}
			120	2490	1.3×10^{-5}
			125	2600	1.4×10^{-6}
			127	2621	3.1×10^{-7}
				2642	8.7×10^{-10}

Conclusions. The above test problems indicate that our results compare favorably with those given by Fletcher and Powell in [1], and that our algorithm is applicable to problems of moderate size. The advantages of this algorithm are that stable finite convergence is obtained in the case of a quadratic objective function without the need for a line search, and there is almost complete freedom in the choice of step direction and step size (the choices used here are certainly not definitive). The main disadvantage of this algorithm seems to be that the need to separately store the A_{k} and B_{k} matrices and to check for linear independence (see Appendix I) requires storage of two more $N \times N$ symmetric matrices than in Fletcher and Powell's algorithm.

It should be noted that in the Davidon-Fletcher-Powell type of algorithm, completely analogous A_{k} and B_{k} matrices are constructed [6]; however, the step directions are chosen to be G-orthogonal vectors, and the step direction and size is completely determined by this consideration. Such restrictions are avoided in our algorithm by computing G-orthogonal vectors from an almost arbitrary step, rather than requiring the step itself to be G-orthogonal.

Finally, we note that minimization of a positive semidefinite quadratic function is treated in Appendix II. We show that with almost no modification, all the above results hold if A^{-1} and G^{-1} are replaced by A^{*} and G^{*} (pseudo-inverse of A and G) and that the above algorithm may be applied with only slight modification, and
therefore may be used to minimize functions that have singular second derivative matrices at a minimum.

Appendix I (Gram-Schmidt Orthogonalization Procedure). Let d_{1}, \cdots, d_{k} be step directions. Let

$$
\begin{aligned}
P_{0} & =0, \quad c_{k}=d_{k}-P_{k-1} d_{k}, \\
P_{k} & =P_{k-1}+c_{k} c_{k}^{\prime} / c_{k}^{\prime} c_{k}
\end{aligned} \quad \begin{array}{ll}
\text { if } c_{k} \neq 0, \\
& =P_{k-1}
\end{array}
$$

Then $P_{k-1} d_{k}$ is the projection of d_{k} on the manifold generated by d_{1}, \cdots, d_{k-1}. The angle between this manifold and d_{k} is $\cos ^{-1}\left(\left\|P_{k-1} d_{k}\right\| /\left\|d_{k}\right\|\right)$. Thus, d_{k} is "almost" linearly dependent on d_{1}, \cdots, d_{k-1}, if $\left|1-\| P_{k-1} d_{k}\right|\left|/\left|\left|d_{k}\right|\right|\right|$ is "almost" zero.

Clearly, the columns of $M, M=I-P_{k-1}$, where I is the identity, are orthogonal to d_{1}, \cdots, d_{k-1}. Let m_{i} be the j th column of M, j chosen so that $m_{i} \neq 0$. Let u_{j} be a vector with the j th component 1 and all other components zero. Let p_{i} be the j th column of P_{k-1}. Then a unit vector e_{k} orthogonal to d_{1}, \cdots, d_{k} is

$$
e_{k}=\frac{m_{i}}{\left\|m_{i}\right\|}=\frac{u_{i}-P_{i}}{\left\|u_{i}-p_{i}\right\|} .
$$

Appendix II (Minimization of a Positive Semidefinite Quadratic Function). Let

$$
\begin{equation*}
f(x)=\frac{1}{2} x^{\prime} A x+b^{\prime} x+e, \tag{II.1}
\end{equation*}
$$

where A is a positive semidefinite symmetric matrix (p.s.s.m.). The corollary to Lemma 1 given below may be used to modify the algorithm to include the case where A is a p.s.s.m.

Notation.
$N_{A}=$ null space of A,
$P_{A}=N_{A}^{\perp}$ (orthogonal complement of N_{A}),
$R_{A}=$ range of A.
Definition. A^{*} is the pseudo-inverse of A if A^{*} satisfies

$$
\begin{aligned}
A A^{*} x & =x, & & x \text { in } P_{A}, \\
A^{*} x & =0, & & x \text { in } R_{A}^{\perp},
\end{aligned}
$$

(for definition and properties of A^{*}, see [7, Appendix C]). We note that $\left(A^{*}\right)^{*}=A$, and $A A^{*} A=A$. Further, we have from the symmetry of A that $R_{A}^{\perp}=N_{A}$ and $R_{A}=P_{A}$.

Corollary 1 (to Lemma 1). For $k<n$, suppose there is no d_{k+1} such that $A c_{k+1} \neq 0$. Then for any x, y such that $y=A x$,

$$
A\left(A_{k} y-x\right)=0
$$

Proof. First, we prove that $A c_{i}, i \leqq k$, span R_{A}. If this is not true, then, for some $z \neq 0$ in $R_{A}, z^{\prime} A c_{i}=0, i \leqq k$, and (since $\left.R_{A}=P_{A}\right) A z \neq 0$; then, for $d_{k+1}=z$,

$$
A_{k} A d_{k+1}=\sum_{i=1}^{k} \frac{c_{i} c_{i}^{\prime}}{c_{i}^{\prime} A c_{i}} A d_{k+1}=0
$$

and

$$
c_{k+1}=d_{k+1}-A_{k} A d_{k+1}=d_{k+1}=z
$$

Hence, we have found a d_{k+1} such that

$$
A c_{k+1}=A z \neq 0
$$

a contradiction to the main hypothesis. Thus, $A c_{i}, i \leqq k$, span R_{A}. Hence, for any x, $A x=\sum_{i=1}^{k} a_{i} A c_{i}$ so that for $y=A x$, we have

$$
\begin{aligned}
A\left(A_{k} y-x\right) & =A A_{k} A x-A x \\
& =A\left[\sum_{i=1}^{k} \frac{c_{i} c_{i}^{\prime}}{c_{i}^{\prime} A c_{i}} \sum_{i=1}^{k} a_{i} A c_{i}\right]-\sum_{j=1}^{k} a_{i} A c_{j}=0
\end{aligned}
$$

The algorithm is modified as follows. Suppose f is given by (II.1), A is a p.s.s.m., and there is no step d_{k} such that in Step (1) of the algorithm, $a_{k} \neq 0$. Since $a_{k}=$ $s_{k}^{\prime} y_{k}=s_{k}^{\prime} A s_{k}, a_{k}>0$ if and only if $A s_{k} \neq 0$; hence, $A s_{k}=0, A$ is of rank $k-1$, and $A s_{i}, i \leqq k-1$, span R_{A} (see above proof). We will show that for any x, f is minimized by

$$
z=x-A_{k-1} g(x)
$$

where $g(x)=\operatorname{grad} f(x)=A x+b$. First, note that \hat{x} minimizes f if and only if $g(\hat{x})=0$. For any such \hat{x}, let

$$
\begin{aligned}
v & =A_{k-1} g(x)-(x-\hat{x})=A_{k-1}(g(x)-g(\hat{x}))-(x-\hat{x}) \\
& =A_{k-1} A(x-\hat{x})-(x-\hat{x})
\end{aligned}
$$

where, by Corollary $1, A v=0$, since there is no d_{k} such that $A s_{k} \neq 0\left(a_{k} \neq 0\right)$. Then,

$$
z=x-A_{k-1} g(x)=\hat{x}-v
$$

and

$$
g(z)=A(\hat{x}-v)+b=A \hat{x}+b=g(\hat{x})=0
$$

Thus, z minimizes f. In particular, $x_{k-1}-A_{k-1} g_{k-1}$ minimizes f.
In order to make use of Corollary 1 , we must be able to determine that there is no d_{k} such that $a_{k} \neq 0$. This is easily accomplished by trying $N-(k-1)$ directions independent of d_{1}, \cdots, d_{k-1}, determining these directions by use of the GramSchmidt procedure given in Appendix I (by (2) of Lemma 1, we do not have to try d_{1}, \cdots, d_{k-1} or any combination of these).

It is often desirable to find A, A^{*}, and the vector of least norm that minimizes f (least squares minimum of f). Once a minimizing solution has been obtained, these are all easily found by straightforward application of the following results. Regarding notation used below, note that in the algorithm, $A s_{i}=y_{i}$ when f is given by (II.1).

Lemma 4. (1) Let s_{1}, \cdots, s_{k} be an A-orthogonal basis for P_{A}. Then $\hat{A}=A^{*}$, where

$$
\hat{A}=\sum_{i=1}^{k} \frac{s_{i} s_{i}^{\prime}}{s_{i}^{\prime} A s_{i}}
$$

(2) Let z_{1}, \cdots, z_{k} be an A^{*}-orthogonal basis for P_{A}^{*}. Then,

$$
A=\sum_{i=1}^{k} \frac{z_{i} z_{i}^{\prime}}{z_{i}^{\prime} A^{*} z_{i}}
$$

Suppose that in Step (1) of the algorithm, there is no d_{k} such that $a_{k} \neq 0$, and f is given by (II.1). Then,
(3) $A=\sum_{i=1}^{k-1} A s_{i} s_{i}^{\prime} A / s_{i}^{\prime} A s_{i}$.
(4) Using A from (3), an A-orthogonal basis $r_{i}, i \leqq k-1$, for P_{A} can be generated from $A s_{i}, i \leqq k-1$, by the Gram-Schmidt orthogonalization procedure, viz. for $i=1, \cdots, k-1$,

$$
\begin{aligned}
& M_{0}=0 \\
& r_{i}=A s_{i}-M_{i-1} A s_{i} \\
& M_{i}=M_{i-1}+r_{i} r_{i}^{\prime} A / r_{i}^{\prime} A r_{i}
\end{aligned}
$$

then, by (1) of Lemma 4,

$$
A^{*}=\sum_{i=1}^{k-1} r_{i} r_{i}^{\prime} / r_{i}^{\prime} A r_{i}
$$

(5) Let \hat{x} minimize f. Then, the least squares minimum of f is x^{*},

$$
x^{*}=A^{*} \hat{A} \hat{x}
$$

Proof. (1) For x in $P_{A}\left(=R_{A}\right), x=\sum_{i=1}^{k} a_{i} A s_{i}$ and clearly $A \hat{A} x=x$. For x in $R_{A}^{\perp}\left(=N_{A}\right), x^{\prime} s_{i}=0, i \leqq k$, and clearly $A x=0$.
(2) Follows from (1) of Lemma 4 and the fact that $\left(A^{*}\right)^{*}=A$.
(3) Since $A A^{*} A=A, s_{i}^{\prime} A A^{*} A s_{i}=s_{i}^{\prime} A s_{i}$, i.e., $A s_{i}, i \leqq k-1$, are A^{*}-orthogonal. Then $A s_{i}, i \leqq k-1$, are a basis for P_{A}^{*} since they span P_{A}^{*} (see proof of Corollary 1) and (3) follows from (2) of Lemma 4.
(4) Follows from (1) of Lemma 4, as stated.
(5) This is a property of the pseudo-inverse (see [7, Appendix C, 17.10]).

Executive Office of the President
Office of Emergency Preparedness
Systems Evaluation Division
Washington, D. C. 20504

1. R. Fletcher \& M. J. D. Powell, "A rapidly convergent descent method for minimization," Comput. J., v. 6, 1963, pp. 163-168. MR 27 \#2096.
2. B. A. Murtagh \& R. W. H. Sargent, A Constrained Minimization Method With Quadratic Convergence, presented at the I. M. A. Conference on Optimization, held at the University of Keele, 1968.
3. R. Fletcher, A New Approach to Variable Metric Algorithms, U.K.A.E.A. Report HL 69/4734.
4. M. J. D. Powell, "A survey of numerical methods for unconstrained optimization," SIAM Rev., v. 12, 1970, pp. 79-97. MR 41 \#2900.
5. H. H. Rosenbrock, "An automatic method for finding the greatest or least value of a function," Comput. J., v. 3, 1960/61, pp. 175-184. MR 24 \#B2081.
6. H. W. Sorenson, "Comparison of some conjugate direction procedures for function minimization," J. Franklin Inst., v. 288, 1969, pp. 421-441. MR 40 \#8233.
7. L. A. Zadeh \& C. A. Desoer, Linear System Theory, McGraw-Hill, New York, 1963.
8. H. J. Kelley \& G. E. Myers, Conjugate Direction Methods for Parameter Optimization, presented at the 18th Congress of the International Astronautical Federation, Belgrade, Yugoslavia, September 1967.

[^0]: Received December 21, 1970, revised July 27, 1971.
 AMS 1969 subject classifications. Primary 9058.
 Key words and phrases. Optimization, unconstrained optimization, unconstrained minimization, conjugate gradient, rank two, nonlinear equation, quasi-newton, ascent, steepest ascent.

