
MATHEMATICS OF COMPUTATION, VOLUME 26, NUMBER 117, JANUARY, 1972 

A Rank Two Algorithm for Unconstrained 
Minimization 

By Ronald Bass 

Abstract. A stable second-order unconstrained minimization algorithm with quadratic 
termination is given. The algorithm does not require any one-dimensional minimizations. 
Computational results presented indicate that the performance of this algorithm compares 
favorably with other well-known unconstrained minimization algorithms. 

Introduction. Algorithms for unconstrained minimization have enjoyed a great 
deal of attention in recent years. The fundamental philosophy behind most of these 
algorithms is the exploitation of the locally quadratic nature of a well-behaved func- 
tion at an unconstrained local minimum. The Davidon-Fletcher-Powell method [1] 
was highly successful in this regard and guarantees finite convergence when the 
function is quadratic, monotone decrease of function value when it is not. However, 
a potentially time consuming one-dimensional minimization is required in each 
iteration. Recently developed rank one [2] and rank two [3] methods eliminate the 
need for this minimization. The rank one method, however, sacrifices finite con- 
vergence for stability, and the rank two method eliminates the one-dimensional 
minimization by trading finite convergence for monotone convergence. The amount 
of computation in each iteration is reduced, but the number of iterations required 
may be increased. 

In this paper, we present a rank two method which has the combined virtues of 
finite convergence for quadratic functions and stability for any function, and does 
not require a one-dimensional search at each iteration. This combination of de- 
sirable properties is achieved by making full use of the flexibility of a rank two 
algorithm. 

The algorithm given here is cyclic, i.e., it repeats itself every N iterations (when 
minimizing a function of N variables) unlike the Davidon-Fletcher-Powell algorithm, 
which is the same in every iteration. Kelley and Myers [8] presented a cyclic method 
which is a special case of the algorithm given here. 

Statement of the Problem. We are interested in minimizing a scalar function 
f(x), x an N-vector. Let x* be the value of x that minimizes f. Assume that f is locally 
quadratic about x*, i.e., for x near x*, 

(41) f(x) = 'x'Gx + b'x + e, 

where G is a positive definite symmetric matrix (p.d.s.m.). A necessary and sufficient 
condition that x* minimize this quadratic is that 
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g(x*) A grad f(x*) = 0 = Gx* + b 

or 

(2) = -G-"b. 

Given any x. 

(3) x*- x = -G- b-x = -G-"(b + Gx) = -G-lg(x). 

Thus, if f is locally quadratic about x* and x is near x*, 

s= -G-'g(x), X* =X+S, 

i.e., s is a good direction in which to search for a minimum of I. Further, if x is far 
from x*, and G is the matrix of second derivatives of f at x, s is the best direction, 
based on a local quadratic approximation, in which to search for a decrease in f. 

It is therefore desirable to have an efficient method for obtaining a good estimate 
H of the inverse second derivative matrix G`1 at x. 

N-Term Rank One Decompositions of p.d.s.m. Let A be an N X N p.d.s.m. 
Let d1, . , d,, be A-orthogonal, i.e., 

X A di = 0 if I 0j, (4) dd= fpj 

=ri if i= j,ri > 0; 

then it is readily verified that 

(5a) A dAd (Sa) 
~~~~~~~~iI, di Adi 

Conversely, if for some (linearly independent) set of vectors, di, .* ,. 

NI 
(5b) A = -di 

i-l ri 

then, those vectors are A-orthogonal and satisfy Eq. (4). Thus, all N-term symmetric 
rank one decompositions of a p.d.s.m. A1 are exactly those decompositions given 
by all sets of A-'-orthogonal vectors. 

Constructing a Set of G-Orthogonal Vectors From a Set of Linearly Independent 
Vectors. In the following two lemmas, algorithms are given for constructing A-1- 
orthogonal and A-orthogonal vectors for p.d.s.m. A from a set of linearly inde- 
pendent vectors. 

LEMMA 1. Let A be an N X Np.d.s.m. Let d1, * *, do be a set of nonzero vectors. 
Let A, = O. and, for k = 1, * *, N., let 

C4 = dk -At-Adk, 

Ak = Ak-. + ckcl/cl Ack if c4Ack P' 0, 

= Ajl if c'Act = 0. 

Then: 
(1) There exist {ai 1, {bi iI such that 
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i-i 

(a) Cj di + aidi, 
i-1 

(b) di= 2 bici. 
i-1 

(2) If and only ifd, * * , d., n < N, are linearly independent, then c1 *, cn are 
A-orthogonal, and therefore if d1, ***, dN are linearly independent, AN = A 1. 

(3) If di, * , di-, are linearly independent and di is linearly dependent on d1, 
dj..l, then c= 0. 

(4) AkAAk = Ak. 
Proof. (la) We have, by definition, c1 = d1. Assume 

ci= 1 aiidi, I = 1, , k - 1, a11 = 1, 
i-1 

where some of the c, may be zero. 
Then, by definition of c, and Ak, 

Ck = dk- Ak-l Adk =dk- - c iAd 
i-1;Cjp'O ciAc 

k-1 i CAdk 
= dk- E L aij di A 

i-1;Cj#0 i-1 C, C, 

(b) follows immediately from (a). 
(2) Assume d1, * * *, dn are linearly independent. We will show that c1, * , * are 

A-orthogonal. From (la) of Lemma 1, c1, * * *, c,, are nonzero, and 

c'Ac2 = d'AI- dA d2 =. I d1Ad1 

Let the inductive hypothesis be that ci, i < k < n are A-orthogonal. Then, for 
i <k 

C4 Ack+l = ct A(I- Ak A) dk+l 

k ciciA\ 
= cA -c~A I?C C dk+1 =0 ( ' ' E~~i cAci)*+ 

and cl,. c , I are A-orthogonal. 
Conversely, suppose d1, * , d, are linearly dependent. We will show that 

c, * * *, c, are not A-orthogonal. From (la) of Lemma 1, c1, * , c. are also linearly 
dependent, and for some j < n, 

cj = E akck, a, 0 O for some I j. 
kr'j 

Then, if c1, * , c, are A-orthogonal, 

0 = cjAc, = alc'Ac, 5d 0, a contradiction. 

(3) Letdj = >2:1ei di. 
From (la) of Lemma 1, we have 

i-I i-1 i i-1 
cj = di + ^ aiidi = E (ai, + ei) bli = hici 

i-1 i-1 1-1 i-1 
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and from (lb) of Lemma 1, 
i i-I i-I i-I 

di = , bjc, = b, ,i hici + Xbc = mic,. 
i-1 i-1 i-1 i-1 

Then, by (2) of Lemma 1, 
m~~c~ - 

Cic1 
, 0 

c; = d;- A1l-,AdI = I m _ , = A 
i-1 ~~i-1 Cj Ac, .-1 

(4) Since, by (2) of Lemma 1, c1, * , c, are A-orthogonal or zero, 
k k 

~cici C __~ 

AkAAAk = - I c-' A ,I I 
- A,. 

LEMMA 2. Let A be an N X Np.d.s.m. Let d1, * *, dN be a set of nonzero vectors. 
LetA1 = A and, fork = 1, , N, let 

Ck = Akdk, 

k+= Ak - CkCkl/ckdk if cdk # 0, 

- Ak if cdk = 0. 

Then: 
(1) Let z'Ad. = 0, i = 1,** *,k-1. Then Az = Akz. 

(2) Ak is positive semidefinite and Akd, = 0, j < k. 
(3) Let j be the number of linearly independent vectors in d1, ***, dki. Then 

rank(Ak) = N - j. 
Further, if and only ifd, **, dN are linearly independent, 
(4) AN+1 = 0, i.e. A = - cic,/c d,. 
(5) c1, * , CN are A-'-orthogonal. 
Proof. (1) Choose z # 0 such that z'Ad, = 0. Then, 

Ad, d'Az A2z= Az - dAd, = Az. 

Let the inductive hypothesis be that Akz = Az for all z such that z'Adj = 0,j = 1, * * * 

k - 1. Then, certainly, Akz = Az for all z such that z'Ad; = 0, 1 = 1, * , k, and, 
for all such z, 

= AkZ- AkdkdkAk z = 
Akz = Az, if cdk 76 0, 

- Ak?z = Az, if cdk = 0. 

(2) By definition, A1 is positive definite. For d, # 0, 

(Ad, d'A 
Ad,= (A- dtAd1 d =0. 

Let the inductive hypothesis be that Ak is positive semidefinite and Akdj = 0, j < k. 
We will show that Ak+l is positive semidefinite and Ak+ld, = 0, j < k + 1. 

Clearly, any x may be written 
k 

x = z + >2ad, z'Adi = 0, i _ k. 
i-_ 
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Then, z'A = z'A, by (1) of Lemma 2, so that z'Ad, = 0, i < k, and since by hypoth- 
esis Akdj = 0, j < k, it is easily seen that 

x'Ak+lx = z'Akz > 0. 

Thus, Ak+1 is positive semidefinite. By definition, Ak+,di = 0, j < k. If dk is linearly 
dependent on d1, * * *, d-,1, then Akdk = 0 and Ak.+1 = Ak. Otherwise, dkAkdk, > 0, 
since Ak is positive semidefinite and, by definition, rank(A) is at least N - (k - 1). 
Then, 

Ak+ldk = Akdk- Akdk k = o. 

This completes the induction. 
(3) By definition, rank(Ak) ? N - j, and by (2) of Lemma 2, rank(Ak) N -J. 
(4) By (3) of Lemma 2, rank AN+l = 0 if and only if d1, * * *, dN are linearly in- 

dependent. 
(5) We need only note that cfdk, = dkAAkdk> 0; then, by (4) of Lemma 2 and Eq. 

(5b), cfdk = cfA 1c and cl, * , CN are A --orthogonal. 
Let f be given by Eq. (1). Now, suppose we have an algorithm for minimizing 

f such that in the kth iteration we take a step dk = Xk+1 - Xk, resulting in a gradient 
change Yk = g9+1 - g9k 

We show in Lemma 3 how to construct N G-orthogonal vectors from any N steps 
(such that d,, * * *, dN are linearly independent) without using G or G1 explicitly. 

LEMMA 3. Let di, ... , dv be linearly independent. Let Ho = 0. Let HI, = Hk_1 + 

SkS/4sly,, where Sk = dk- Hk-lyk. Then, HN = G1. 
Proof. We will show that 

skGSk = dkyYk- ykHk-lYk = SkYk 

Then, it follows from Lemma 1 and the fact that 

Sk = dk - Hk-Yk = dk - Hk-, Gdk 

that si, * , SN are G-orthogonal and G-1 = HN. Clearly, 

s, = di and s'y, = dlyi = d'Gd1 = s'Gsl. 

Then, by Lemma 1, H1GH, = H1. Let the inductive hypothesis be that 

Hk-,GHk-l = Hk-,. 

Then, since Gdk = yk, we have 

skGSk = (dk - Hk-.lYk)'G(dk -HklYk) 

= dkGdk - yAHk-.Gdk 
- 

dkGHk-yk 
+ 

y'Hk,_GHk-lyk 

= dkyk - Yk Hk-,,Y = sk k 

and, by (4) of Lemma 1, 

HkGHk = Hk. 

Note that the formula for updating Hk in Lemma 3 is the same formula used in 
the rank one algorithm (Eq. (6)). However, in Lemma 3, H- = 0, whereas in the rank 
one algorithm Ho is arbitrary. 
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It should be noted that Lemmas 1 and 2 are simply applications of the Gram- 
Schmidt orthogonalization procedure with respect to the inner product defined by 
A or A-1. The matrices A, in these lemmas are A-orthogonal and A-'-orthogonal 
projection operators. Lemma 3 is an application of Lemma 1. 

Desirable Properties for H,. Suppose f is given by Eq. (1), and let d = Xk+l - 

X*, yt = g+l -g, G- 1 = H. Then, 

Hyk = G-1(Gxk+l + b - Gxk- b) = d,. 

We can now give two definitions of a "good" estimate H, of G- 
First, we could require that Hf+ - Hk be of rank one and that 

Hk+lYkt = dk 

in which case 

(6) Hk+1 = H, + 
(dk - Hky)(dk Hky) 

(dk HkYA;)'Yk 

is the only possible such formula for updating Hk [2]. Alternately, we can require that 
k 

ci, 
N 

Hk = E c + N 

where (cl, * *, c*i, zk+l, ... , ZN) is a set of linearly independent vectors and cl, ... * *, 
are G-orthogonal vectors constructed from the first k steps as described in Lemma 3. 
This criterion motivates the algorithm given below. 

We have shown that a good search direction, -Hlg,, can be obtained if Hk is a 
"good" estimate of the inverse second derivative matrix of f (we will use the second 

definition given above, i.e., Lemma 3). Thus, Hk should be updated so that if f is 

quadratic, HN = G-1 (quadratic termination property). This property ensures rapid 
convergence after reaching a point x near x* if f is quadratic locally about x*. Further, 
it is desirable that Hk be positive definite. Then, no matter how poor an estimate is 

Hk of the inverse second derivative matrix, the "best" search direction, -Hkg,, is a 

locally downhill direction, i.e., there is some positive t such that f(xk + t (-Hkgk)) 

< f(xk) (stability property). In the algorithm given below, Hk has both of these 

properties. 

Algorithm for Unconstrained Minimization. We now give an outline of an 

unconstrained minimization algorithm and show in detail how H,, is updated. Choice 

of step direction and step size are discussed later. 

Step (0) x0 = initial guess of x*, 

Ho = initial guess of inverse second derivative matrix at x0, 

Bo = Ho, 
Ao = 0, 

go= grad f(xo), 
k = 1. 

Step (1) (choose a step d*), 

Xk = Xt- 1 + dk, 

(compute f(x,), g,, and test for convergence), 
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Yk -k - gk-i 

sk = dk - Ak- yk, 

ak = SkYk, 

if ak < 0 go to Step (3) (see discussion below). 

Step (2) Ak = Aki + sksk/ak 

Bk = Bkil - Bk-iSkSkBk-i/skBk-iSk, 

Hk = Ak + Bk, 

increase k by 1, 
if k < N go to Step (1), 
if k > N go to Step (3). 

Step (3) set H- = BA = Hk, 

Ao = 0, 
X0= Xk, 

k= 1, 
go to Step (1). 

Properties of the Algorithm. We now exhibit some important properties of the 
above algorithm. 

Let C, be the condition: d1, * *, dN are linearly independent. 
Property (1) Assume that a, * , aN are positive. Then, sI, * , SN are linearly 

independent if and only if CI holds. 
Proof. It is sufficient to show that Sk is a linear combination of d1, * , dk, where 

the coefficient of dk is not zero. Clearly, sl = dl. Let the inductive hypothesis be that 

i 

Then 
k-i i 

sk= dk - AklYk = dk - Si - 

i- a, 

k-1i i Y 
dk - a i da SdYk 

i-l .-1 a, 

Property (2) BN = 0 if and only if C, holds (by (4) of Lemma 2 and Property (1)). 
Property (3) Let f be quadratic, f given by Eq. (1). Then 
(a) a, > 0 if and only if C, holds. 
Proof. (a) If f is quadratic, then, from the proof of Lemma 3, a, = s'Gsj, and a, 

is zero if and only if s, is zero, and is positive otherwise. But by (1) and (3) of Lemma 
1 and by Property (1), Si is zero if and only if C, does not hold. (b) HN = G- 1 if and 
only if C, holds (by Lemma 3 and Property (2)). 

Property (4) Let ak> 0 for all k. Then, Hk is positive definite for all k if and only 
if C1 holds. 

Proof. Assume C, holds. Let wl, ..., Wk satisfy 
k 

Wi = ECiiSi, wasi = 1, -j, 

i-i 

=0, f#]. 
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Then, any vector x can be written as x = v + y, where 
k 

y = Z biwi, v'si = 0, i = 1, ... , k. 
i-1 

From Lemma 2, Bks, = 0, i = 1, * , k, and Bk is of rank N - k and is positive 
semidefinite. If y and v are not zero, then 

y BkY = 0, v'BkV > 0, 

y'Aky > 0, v 'AkV 0 . 

For x $ 0, y and v are not both zero, and 

x HkX = y' Ay + v'Bkv > 0. 

Conversely, if Cl does not hold, then, by Property (1), for some k, sk is a linear com- 
bination of sl, * * *, sk, and from (2) of Lemma 2, Bk..sk = 0 and Bk is undefined. 

Property (5) Hk satisfies the second criterion for a good estimate of the inverse 
second derivative matrix, since Ak is in fact constructed as indicated in Lemma 3. 
As with the other properties, this condition is contingent upon Cl being satisfied. 

Choice of Step Direction. The natural choice of step direction, as discussed 
in the introduction, is 

dk/ ||dkII = Hkgkl I |Hkgk I I 

where I [xl I = (x'x)"2. However, it is clear from Properties (1)-(5) that if the algorithm 
is to be well behaved, Cl must be satisfied. Suppose Cl is violated by - kgk. Then, 
a satisfactory direction is 

I dk --Hkgk 1 2 1/2 | |dk I I ||jjHkgk I I 
k 

ajkek 

where ek is any unit vector perpendicular to d1, . , dk-, and ak is some prespecified 
constant, 0 < ak < 1 so that dk/I dk I makes an angle of tan '(I - a2)12/ak with the 
manifold generated by d1, * * k, 

The choice of sign is such that -gfdk is maximized, i.e., the modified dk is in the 
most downhill direction. In practice, an ek component would be added if -Hkgk 
almost violated Cl, and we would then choosy 

dk __ Hkgk - efHkgkek 

Ild |I | |Hkgk - eHkgkek|| (1 -I k)1/2 
k 

i a!ek 

where the sign is again chosen to maximize -gkdk (see Appendix I for an efficient 
way to compute ek and check for linear independence). 

The choice of - Hkgk as a search direction is predicated upon the assumption 
that Hk. isin; some sense a fair approximation of the inverse second derivative matrix. 
This assumption is not necessarily valid for the first few iterations, and a more rapid 
initial reduction of the cost function might be obtained by taking these steps in the 
-gk direction. 

Choice of Step Size. In practical application of the Davidon-Fletcher-Powell 
algorithm, it is not possible to find the exact minimum along the search direction, 
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and any method which is used to get an accurate approximation to that minimum, 
such as a Fibonacci search, is very time consuming. Consequently, some method 
which gives an approximation to the minimum is usually used, and it is hoped that 
the inaccuracy will not materially upset the performance of the algorithm. In the 
algorithm given here, any step size which decreases f is acceptable, and will yield 
convergence of H, to G' in N steps if f is quadratic. However, use of a cubic inter- 
polation scheme to achieve approximately the minimum along the search direction, 
such as that given by Fletcher and Powell will guarantee that if H, = G'l, the mini- 
mum will be achieved on the kth step, and will also ensure that g,,+ is approximately 
perpendicular to d,, which in practice is often sufficient to guarantee that C1 is satisfied. 

A somewhat more satisfactory method is the following: take a step dk = -Hkgk; 

if f(xk + d*) < f(xJ), let xk, l = Xk + dk; otherwise, try xk+l = Xk + dl/h', m = 
1, 2, * * *, until a decrease in f is obtained, where, for example, h = 10 may be used 
so that m will remain small. This procedure guarantees that if Hk = Gil, the minimum 
will be achieved on the kth step, and keeps the number of function evaluation per 
iteration small by using a relatively large h. Of course, if enough function values 
have been computed (m = 2), a cubic interpolation can be used rather than simply 
using a larger m. This combined approach seems to be quite effective in practice 
(see test problems). 

Case when ak < 0. Let G(x,) denote the second derivative matrix at xk. We 
have shown (Property (3)) that if f is quadratic, a, > 0. If a, ?5 0, then, either Hk is 
not a good estimate of G- 1(x,) or the step size is so large that a quadratic approxi- 
mation to f with metric G(x,) is not a good representation of f on the set 
1Xk + #3(xk+l - X,,), 0 ? _< 1}. In either case, the curvature information in Hk is 
no longer very accurate. Thus, it is desirable to deemphasize the information in 
Hk by treating Hk and xk as an initial guess and starting again, rather than assuming 
that H, is composed of G-orthogonal vectors constructed from the last k steps. 
Therefore, if a, ?< 0 (or a, < E, e > 0), we go to Step (3). Then, for the kth step 

Sk = 1 = dk 

ak = a, = dkyYk = dkGdb if f is quadratic. 

If a, is still negative, then f is probably not well approximated by a quadratic on 
Xk+ 1dk, , < 0 < 1 }; again we let Xk+1 = Xk + dk and return to Step (3) (without 

updating AO or BO). 
The effect of this procedure is to remove old information from A,, while retaining 

that information in B,. The search direction, -Hkgk, is affected by the old informa- 
tion, but sk depends only on new information in A,. 

Test Problems. The Davidon-Fletcher-Powell algorithm is apparently the most 
successful unconstrained minimization algorithm to date, so the examples presented 
here are taken from Fletcher and Powell's paper [1] and compared with their results. 
The currently accepted basis for comparison of unconstrained minimization algo- 
rithms is the number of objective function evaluations required for convergence, 
since in most practical problems these consume the bulk of the computing time. 
Calculation of the gradient is counted as N function evaluations (N the number of 
variables), since evaluation of each of the N components of the gradient analytically 
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is roughly equivalent to evaluation of the objective function, and evaluation of the 
gradient by perturbation requires at least N function evaluations at perturbed values 
of the variables. 

Since Fletcher and Powell's algorithm, as applied to their test problems [1], re- 
quires at least two function and gradient evaluations per iteration (one for the main 
algorithm and one for the cubic interpolation), we shall ascribe to their examples a 
minimum of 2N + 2 function evaluations per iteration. 

The calculations for the algorithm given here were carried out on a Univac 1108 
computer in single-precision arithmetic (8 significant figures). In all examples, the 
step direction and step size schemes given above were used, with h = 10 and ak = .1 
and were found to give good results (convergence rates were not very sensitive to 
changes in these parameters). The first test problem is (Table 1) the parabolic valley 

TABLE 1 
Parabolic Valley 

Our Method Fletcher and Powell 

Nwnber of function Minimum number of 
Iteration f evaluations f function evaluations 

0 24.2 1 24.2 1 
3 4.18 12 3.69 18 
6 3.67 21 1.605 36 
9 3.62 30 .745 54 

12 3.37 40 .196 72 
15 2.14 50 .012 90 
18 1.78 60 1 X 10-8 108 
25 .631 82 
30 .344 100 
35 .260 116 
40 .116 133 
45 .066 151 
50 .025 IT 
55 .015 l9e 
58 .0012 203 
60 2.7 X 10-4 210 
62 3.5 X 10-? 217 
64 1.4 X 10-7 224 
65 4.4 X 10-8 228 
66 4.6 X 10-12 231 

originally given by Rosenbrock [5], 

f(xI, x2) = 100(x2 -Xi)2 + (1 - 

with starting point (-1.2, 1) and a zero at (1, 1). The second problem (Table 2) is a 
steep-sided helical valley, 
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f(X1, X2, X3) = 100[(x3 - 10 A)2 + (R - 1)2] + X3, 

where 

27rA = arc tan(X2/x1) if xi > 0, 

-arc tan (x2/x1) + ir if xl < 0, 
and 

R = (X2 + X2)112. 

The distance x3 along the axis of the helix is restricted so that -2.5 < x3 < 7.5. The 
starting point is (-1, 0, 0) and the function has a zero minimum at (1, 0, 0). 

TABLE 2 
Helical Valley 

Our Method Fletcher and Powell 

Number offunction Minimum number of 
Iteration f evaluations f function evaluations 

0 2500 1 2500 1 
1 2139 4 520 8 
2 13.34 8 110 16 
3 6.99 13 74.1 24 
4 6.84 17 24.2 32 
5 .46 21 10.9 40 
6 .14 25 9.8 48 
7 .065 29 6.3 56 
8 .049 33 6.09 64 
9 .047 37 1.89 72 

10 .047 41 1.75 80 
11 .040 46 .76 88 
12 .0089 50 .38 96 
13 .0063 54 .14 104 
14 .0045 59 .058 112 
15 5.6 X 10" 63 .018 120 
16 1.4 X 10-4 67 8 X 10-4 128 
17 1.1 X 10-4 72 3 X 10-6 136 
18 5.0 X 10-6 76 7 X 10-8 144 
19 3.6 X 10-6 81 
20 2.5 X 10- 86 
21 3.7 X 10" 90 

Finally, we give some examples (Table 3) of solutions of functions of many 
variables. The function used is 

N N \2 N \4 f(x) = E X2 + (E i12X ) + ( 
1/2 ) 

which has a zero minimum at x, = 0. Starting values were xi = .1. 
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TABLE 3 
Function of Many Variables 

N= 10 N=20 

Nwnber of Nunber of 
function Function function 

Iteration evaluations value Iteration evaluations Function value 

0 1 30.6 0 1 1484 
3 37 .154 3 69 39.1 
6 70 .0035 6 132 1.86 
9 103 .098 10 176 .47 

12 125 .00019 20 386 .010 
15 158 6 X 10-7 30 596 .0017 
18 192 6 X 10-8 40 806 .0016 
20 205 4 X 10-1? 50 1017 6.6 X 10' 

60 1227 3.8 X 10-4 
70 1437 2.2 X 10-4 
80 1649 1.7 X 10-4 
90 1859 7.2 X 10-5 

100 2069 6.2 X 10-5 
110 2279 4.9 X 105 
120 2490 1.3 X 10-5 
125 2600 1.4 X 10-6 
126 2621 3.1 X 10-7 

127 2642 8.7 X 1010 

Conclusions. The above test problems indicate that our results compare favor- 
ably with those given by Fletcher and Powell in [1], and that our algorithm is ap- 
plicable to problems of moderate size. The advantages of this algorithm are that 
stable finite convergence is obtained in the case of a quadratic objective function 
without the need for a line search, and there is almost complete freedom in the choice 
of step direction and step size (the choices used here are certainly not definitive). 
The main disadvantage of this algorithm seems to be that the need to separately 
store the A, and B, matrices and to check for linear independence (see Appendix I) 
requires storage of two more N X N symmetric matrices than in Fletcher and Powell's 
algorithm. 

It should be noted that in the Davidon-Fletcher-Powell type of algorithm, com- 
pletely analogous A, and B, matrices are constructed [6]; however, the step directions 
are chosen to be G-orthogonal vectors, and the step direction and size is completely 
determined by this consideration. Such restrictions are avoided in our algorithm by 
computing G-orthogonal vectors from an almost arbitrary step, rather than re- 
quiring the step itself to be G-orthogonal. 

Finally, we note that minimization of a positive semidefinite quadratic function 
is treated in Appendix II. We show that with almost no modification, all the above 
results hold if A` and G` are replaced by A* and G* (pseudo-inverse of A and G) 
and that the above algorithm may be applied with only slight modification, and 
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therefore may be used to minimize functions that have singular second derivative 
matrices at a minimum. 

Appendix I (Gram-Schmidt Orthogonalization Procedure). Let di, dh 
be step directions. Let 

PO = 0, Ck = dk- Pk-1 dk 

Pk = Pk-1 + CkCk/CkCk if Ck $j- 0, 

= Pk-1 if Ck = 0. 

Then Pkldk is the projection of dk on the manifold generated by d, -, dk_1. The 
angle between this manifold and dk is cos-'(IjPkldki I/I dbJ ). Thus, dk is "almost" 
linearly dependent on d1, . * - , dk-,, if 11 - iPkldkJJ/JIdklI is "almost" zero. 

Clearly, the columns of M, M = I - Pk-,, where I is the identity, are orthogonal 
to d1, * * *, dk..1 Let m, be the jth column of M, j chosen so that mi $ 0. Let u, be a 
vector with the jth component 1 and all other components zero. Let p, be the jth 
column of Pal-. Then a unit vector ek orthogonal to d1, . *, d-, is 

ek - M, _ li l 
Pi 

Appendix II (Minimization of a Positive Semidefinite Quadratic Function). 
Let 

(11.1) f(x)- 4x'Ax + b'x + e, 

where A is a positive semidefinite symmetric matrix (p.s.s.m.). The corollary to 
Lemma 1 given below may be used to modify the algorithm to include the case where 
A is a p.s.s.m. 

Notation. 

NA = null space of A, 
PA = NA (orthogonal complement of NA), 

RA = range of A. 
Definition. A* is the pseudo-inverse of A if A* satisfies 

AA*x=x, X in PA, 

A*x = O. x in RA, 

(for definition and properties of A*, see [7, Appendix C]). We note that (A*)* = A, 
and AA*A = A. Further, we have from the symmetry of A that R' = NA and RA = PA. 

COROLLARY I (To LEMMA 1). For k < n, suppose there is no dh+1 such that Ach+l 0. 
Then for any x, y such that y = Ax, 

A(Aky - x) = 0. 

Proof. First, we prove that Aci, i C k, span RA. If this is not true, then, for some 
z $ O in RA, z'Aci = 0 i-< k, and (since RA = PA) AZ $ 0; then, for d+l = z, 

AkAdk+l = E Adh+1 = 0 



142 RONALD BASS 

and 

Ck+1 = dk+1 - AkAdk+l = dk+l = Z. 

Hence, we have found a dk+l such that 

ACk+l = Az 0, 

a contradiction to the main hypothesis. Thus, Aci, i _ k, span RA. Hence, for any x, 
Ax = E l ajAci so that for y = Ax, we have 

A(Aky - x) = AAkAx - Ax 

[k C C' k ] k = A[ aj ~ aAcij - Ej a, Aci = 0. 

The algorithm is modified as follows. Suppose f is given by (II.1), A is a p.s.s.m., 
and there is no step dk such that in Step (1) of the algorithm, a, 0 0. Since a, = 
SLYk = skAsk, ak > 0 if and only if Ask 0 0; hence, Ask = 0, A is of rank k - 1, 
and Asi, i < k - 1, span RA (see above proof). We will show that for any x, f is 
minimized by 

z = x - Ak_19(x)* 

where g(x) = grad f(x) = Ax + b. First, note that x minimizes f if and only if g(l) = 0. 
For any such x, let 

V = Ak-1g(X) - (X - X)= Ak-1(g(X) - g(X)) - (X - X 

= AklA(x -x) - (x -x), 

where, by Corollary 1, Av = 0, since there is no dk such that Ask id 0 (ak id 0). Then, 

z = x - Ak-1g(x) = x v 

and 

g(z) = AG -v) + b = Ax + b = gGx) = 0. 

Thus, z minimizes f. In particular, Xkl-Ajlgkl minimizes f. 
In order to make use of Corollary 1, we must be able to determine that there is 

no dk such that ak O 0. This is easily accomplished by trying N - (k - 1) directions 
independent of d1, * , dk, determining these directions by use of the Gram- 
Schmidt procedure given in Appendix I (by (2) of Lemma 1, we do not have to try 
dil * * , d,-, or any combination of these). 

It is often desirable to find A, A*, and the vector of least norm that minimizes 
f (least squares minimum of f). Once a minimizing solution has been obtained, these 
are all easily found by straightforward application of the following results. Regarding 
notation used below, note that in the algorithm, Asi = y, when f is given by (11.1). 

LEMMA 4. (1) Let si, * Sk , Sk be an A-orthogonal basis for PA. Then A = A*, where 

,_ s4"Asi 
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(2) Let z1, * *, zk be an A*-orthogonal basis for P*. Then, 
k I 

A E 
ZiZi A = A z1 A*zi 

Suppose that in Step (1) of the algorithm, there is no dk such that ak 0 Q, and f is given 
by (II.1). Then, 

(3) A = 1 $ s 
(4) Using A from (3), an A-orthogonal basis ri, i < k - 1, for PA can be generated 

from As,, i < k - 1, by the Gram-Schmidt orthogonalization procedure, viz. for 

Mi 0, 

ri As, - Mi-1 Asi, 

Mi= Mi-1 + rir'A/r Ar, 

then, by (1) of Lemma 4, 
k-1 

A*= rr'/r' Ari- 

(5) Let x minimize f. Then, the least squares minimum of f is x*, 

x* = A*Ax. 

Proof. (1) For x in PA (=RA), x _ . aAsi and clearly AAx = x. For x in 
RI (=NA), x's, = 0 i < k, and clearly Ax = 0. 

(2) Follows from (1) of Lemma 4 and the fact that (A*)* = A. 
(3) Since AA*A = A, sMAA*As, = s'Asj, i.e., Asi, i < k - 1, are A*-orthogonal. 

Then Asi, i ! k -1, are a basis for P* since they span PA (see proof of Corollary 1) 
and (3) follows from (2) of Lemma 4. 

(4) Follows from (1) of Lemma 4, as stated. 
(5) This is a property of the pseudo-inverse (see [7, Appendix C, 17.10]). 
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